Non-ionic triblock copolymers at the oil-water interface: structure and properties

P. Ramírez*a, A. Stoccob, J. Muñoza, and R. Millerc

pramirez@us.es

a Departamento de Ingeniería Química, Facultad de Química. Universidad de Sevilla, P. García González 1, 41012 Sevilla, Spain

b Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1, 14109 Berlin, Germany

c Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14424 Potsdam, Germany

The structure and the dilational properties of three non-ionic trilock PEO-PPO-PEO copolymers (Pluronics F68, P9400 and L64) of increasing/decreasing hydrophobicity were investigated for the first time at the water-hexane interface. Surface dilational rheology has been investigated by means of the oscillating drop method at the water-hexane interface. Whereas, nulling ellipsometric measurements were carried out to gain insight into the copolymer structure.

From the dilational rheology measurements the limiting elasticity values, E_0, of the Pluronics as function of surface pressure Π were obtained. In a dilute regime ($\Pi < 10 \text{ mN/m}$) E_0 was only a function of the surface pressure. At relatively high values of Π, interfacial transitions could occur and E_0 decreases passing through a local minimum. The main difference between the three copolymers studied can be quantified by the local minimum of E_0. It is observed that the minimum is more pronounced for more hydrophilic copolymers, i.e. Pluronics containing more oxyethylene (EO) groups, (F68 > P9400 > L64).

Changes of the ellipsometric parameters could reveal conformational transitions at the interface. Experimental results were discussed and explained on the basis of two- and three-dimensional structure where the copolymer hydrophilic content plays a crucial role.

![Limiting elasticity, E_0, vs. surface pressure, Π, plot. The symbols are the measurements obtained for the three Pluronics studied. The solid line is the slope of the lineal variation of the data at low surface pressure. Triangles: Pluronic F68, Squares: Pluronic P9400, Circles: Pluronic L64.](image-url)