Partition coefficients and possible solubilization sites of phenylalkanols in zwitterionic micelles

T. Tominaga* and T. Nishihara

Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan

* e-mail: tominaga@dac.ous.ac.jp

We have measured limiting interdiffusion coefficients of phenylalkanols (benzyl alcohol, 2-phenylethanol, 3-phenyl-1-propanol, 4-phenyl-1-butanol, and 5-phenyl-1-pentanol) in water and aqueous micellar solutions of tetradecyltrimethylammonium bromide and obtained partition coefficients [1]. We have also made the measurements in solutions of dodecyl- and hexadecyltrimethylammonium bromide. In this study, we extended the measurements using zwitterionic surfactants, N-dodecyl-, N-tetradecyl-, and N-hexadecyl-N,N-dimethyl-3-aminio-1-propane sulfonates (C₁₂DAPS, C₁₄DAPS, C₁₆DAPS).

From the diffusion coefficients of phenylalkanols in water, D_w, and micellar solutions, D, as well as tracer diffusion coefficients of micelles, D_m, which were obtained by measuring the diffusion of pyrene solubilized in the micelles, we calculated the degree of association of phenylalkanols to micelles, p, from the relation

$$D = (1-p)D_w + pD_m \quad (1)$$

From the p values we calculated partition coefficients of phenylalkanols between micellar pseudophase and bulk aqueous phase, $K_x = x_m/x_w$, where x_m and x_w are mole fractions of phenylalkanols in micellar pseudophase and bulk aqueous phase, respectively. Values for the standard free energy change for the solubilization, $\Delta G^0 = -RT\ln K_x$, were also calculated. For a given micelle, the ΔG^0 values increase with increasing chain length of phenylalkanols; we compare the effect of the alkyl chain length with those for other systems. For a given phenylalkanol, ΔG^0 values increase with increasing chain length of CₙDAPS. The increase is large from C₁₂DAPS to C₁₄DAPS, but not so large from C₁₄DAPS to C₁₆DAPS. The results are compared with those for alkyltrimethylammonium bromides, and possible solubilization sites are discussed.