Formulation of Transparent O/I$_1$ and O/H$_1$ Emulsions in Nonionic Surfactant Systems

Kenji Aramaki, Takuya Takahashi, Mohammad Mydul Alam, Yusuke Tsuji, Yuki Sugiyama, and Kei Watanabe

1Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, 240-8501 Yokohama, Japan
2Shiseido Research Center
Hayabuchi 2-2-1, 224-8558 Yokohama, Japan
*e-mail: aramakik@ynu.ac.jp

Liquid crystalline phases such as cubic phase and hexagonal phase have viscoelastic properties so that we can obtain a gel-like emulsion by employing such a liquid crystal as a continuous phase. In this contribution formulation of O/I$_1$ and O/H$_1$-type emulsion and how to adjust the transparency of the emulsions are presented. The O/I$_1$ and O/H$_1$-type emulsions can be obtained from equilibrium of a cubic phase and a hexagonal phase with excess oil phase, respectively, by dispersing the oil phase in the liquid crystalline phases as particles. Since such liquid crystalline phases are viscous, emulsification is performed at a temperature being higher than the melting temperatures of the liquid crystals. Once the oil phase is well-dispersed, the system can be cooled down which makes the continuous phase turns again into a liquid crystalline phase. Rheological properties of the O/I$_1$ and O/H$_1$-type emulsions are solid-like one and highly viscous. Like convensional O/W-type emulsions, the O/I$_1$ and O/H$_1$-type emulsions are milky appearance but one can obtain a transparent emulsion at a certain composition due to the contrast matching of the dispersed and the continuous phases [1].

More active approach to obtain the transparent O/I$_1$ and O/H$_1$-type emulsions is to adjust the refractive index of the aqueous phase by mixing a high-refractive index solvent such as glycerol. Fig.1 is the change in the transparency of the O/I$_1$-type emulsion formed in a water/glycerol/C$_{12}$EO$_9$/isododecane system. The glycerol concentrations in a water-glycerol mixture are shown. The transparecy is varied gradually and a transparent emulsion is formulated at 40wt% of glycerol. When we changed the surfactant to C$_{12}$EO$_7$, the transparent emulsion cannot be obtained since the phase transition takes place at high glycerol concentration. A transparent O/H$_1$-type emulsion can also be obtained by adjusting the refractive index of the continuous phase.

<table>
<thead>
<tr>
<th>0wt%</th>
<th>10wt%</th>
<th>20wt%</th>
<th>30wt%</th>
<th>40wt%</th>
<th>50wt%</th>
</tr>
</thead>
</table>

Fig.1 Adjusting transparency of O/I$_1$ emulsion by glycerol concentration in aqueous phase.